Search results
Results From The WOW.Com Content Network
The radicals formed from alkenyl peroxides can be utilized in organic radical reactions. For example, they can mediate hydrogen atom abstraction reactions and thus lead to the functionalization of C-H bonds, [7] or they can be used to introduce ketone residues by addition of the alkenyloxyl radicals to alkenes. [8] [9] [10]
In general, if more than one alkene can be formed during dehalogenation by an elimination reaction, the more stable alkene is the major product. There are two types of elimination reactions, E1 and E2. An E2 reaction is a One step mechanism in which carbon-hydrogen and carbon-halogen bonds break to form a double bond. C=C Pi bond.
More generally, Zaytsev's rule predicts that in an elimination reaction the most substituted product will be the most stable, and therefore the most favored. The rule makes no generalizations about the stereochemistry of the newly formed alkene, but only the regiochemistry of the elimination reaction. While effective at predicting the favored ...
The Wittig reaction involves reaction of an aldehyde or ketone with a Wittig reagent (or phosphorane) of the type Ph 3 P=CHR to produce an alkene and Ph 3 P=O. The Wittig reagent is itself prepared easily from triphenylphosphine and an alkyl halide.
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.
The same is true when an alkene reacts with water in an additional reaction to form an alcohol that involves carbocation formation. The hydroxyl group (OH) bonds to the carbon that has the greater number of carbon-carbon bonds, while the hydrogen bonds to the carbon on the other end of the double bond, that has more carbon–hydrogen bonds.
The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene (or alkyne) to form a cyclopropane. [ 1 ] [ 2 ] [ 3 ] It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith .
The Woodward cis-hydroxylation (also known as the Woodward reaction) is the chemical reaction of alkenes with iodine and silver acetate in wet acetic acid to form cis-diols. [1] [2] (conversion of olefin into cis-diol) The reaction is named after its discoverer, Robert Burns Woodward. The Woodward cis-hydroxylation