When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix is the list of entries , where =. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:

  3. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero.

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix containing zeros in all entries except for the first row, first column, and main diagonal. Band matrix: A square matrix whose non-zero entries are confined to a diagonal band. Bidiagonal matrix: A matrix with elements only on the main diagonal and either the superdiagonal or subdiagonal. Sometimes defined differently, see article.

  5. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    In linear algebra, the trace of a square matrix A, denoted tr(A), [1] is the sum of the elements on its main diagonal, + + +.It is only defined for a square matrix (n × n).The trace of a matrix is the sum of its eigenvalues (counted with multiplicities).

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A , denoted A −1 .

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A matrix whose elements above the main diagonal are all zero is called a lower triangular matrix, while a matrix whose elements below the main diagonal are all zero is called an upper triangular matrix. As with diagonal matrices, the eigenvalues of triangular matrices are the elements of the main diagonal.

  8. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Indeed, such a matrix can be reduced, by appropriately adding multiples of the columns with fewer nonzero entries to those with more entries, to a diagonal matrix (without changing the determinant). For such a matrix, using the linearity in each column reduces to the identity matrix, in which case the stated formula holds by the very first ...

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The λ i s are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1] [2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.