Search results
Results From The WOW.Com Content Network
In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, into an accretion disk. [ 1 ] [ 2 ] Most astronomical objects , such as galaxies , stars , and planets , are formed by accretion processes.
The most prominent accretion disks are those of active galactic nuclei and of quasars, which are thought to be massive black holes at the center of galaxies. As matter enters the accretion disc, it follows a trajectory called a tendex line, which describes an inward spiral. This is because particles rub and bounce against each other in a ...
The runaway accretion lasts between 10,000 and 100,000 years and ends when the largest bodies exceed approximately 1,000 km in diameter. [20] Slowing of the accretion is caused by gravitational perturbations by large bodies on the remaining planetesimals. [20] [65] In addition, the influence of larger bodies stops further growth of smaller ...
Of these, perhaps the most prominent is the theory of competitive accretion, which suggests that massive protostars are "seeded" by low-mass protostars which compete with other protostars to draw in matter from the entire parent molecular cloud, instead of simply from a small local region. [63] [64]
The matter accreting onto the black hole is unlikely to fall directly in, but will have some angular momentum around the black hole, which will cause the matter to collect into an accretion disc. Quasars may also be ignited or re-ignited when normal galaxies merge and the black hole is infused with a fresh source of matter. [43]
Pebble accretion is the accumulation of particles, ranging from centimeters up to meters in diameter, into planetesimals in a protoplanetary disk that is enhanced by aerodynamic drag from the gas present in the disk. This drag reduces the relative velocity of pebbles as they pass by larger bodies, preventing some from escaping the body's gravity.
Dissipative processes in the accretion disc transport matter inwards and angular momentum outwards, while causing the accretion disc to heat up. The expected spectrum of an accretion disc peaks in the optical-ultraviolet waveband; in addition, a corona of hot material forms above the accretion disc and can inverse-Compton scatter photons up to ...
Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics. HBC 1 is a young pre-main-sequence star. [11]