Search results
Results From The WOW.Com Content Network
The Lebesgue measure on is a set function that assigns a non-negative real number to every set of real numbers that belongs to the Lebesgue -algebra. [ 5 ] Its definition begins with the set Intervals ( R ) {\displaystyle \operatorname {Intervals} (\mathbb {R} )} of all intervals of real numbers, which is a semialgebra on R . {\displaystyle ...
Dask delayed [20] is an interface used to parallelize generic Python code that does not fit into high level collections like Dask Array or Dask DataFrame. Python functions decorated with Dask delayed adopt a lazy evaluation strategy by deferring execution and generating a task graph with the function and its arguments.
The set of all bags over type T is given by the expression bag T. If by multiset one considers equal items identical and simply counts them, then a multiset can be interpreted as a function from the input domain to the non-negative integers (natural numbers), generalizing the identification of a set with its indicator function. In some cases a ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The nested set model is a solution to that problem. An alternative solution is the expression of the hierarchy as a parent-child relation. Joe Celko called this the adjacency list model. If the hierarchy can have arbitrary depth, the adjacency list model does not allow the expression of operations such as comparing the contents of hierarchies ...
Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . [1] In some contexts, a family of sets may be allowed to contain repeated copies of any given member, [ 2 ] [ 3 ] [ 4 ] and in other contexts it may form a proper class .
A primitive recursive set function is a function from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion: The basic functions are: Projection: P n,m (x 1, ..., x n) = x m for 0 ≤ m ≤ n; Zero: F(x) = 0
The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.