Search results
Results From The WOW.Com Content Network
A gas network is in the steady state when the values of gas flow characteristics are independent of time and system described by the set of nonlinear equations. The goal of simple simulation of a gas network is usually that of computing the values of nodes' pressures, loads and the values of flows in the individual pipes.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
Sampson flow is the macroscopic analog of effusion flow, which describes stochastic diffusion of molecules through an orifice much smaller than the mean-free-path of the gas molecules. For pore diameters on the order of the mean-free-path of the fluid, flow will occur with contributions from the molecular regime as well as the viscous regime ...
Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.
The laminar flow through a pipe of uniform (circular) cross-section is known as Hagen–Poiseuille flow. The equations governing the Hagen–Poiseuille flow can be derived directly from the Navier–Stokes momentum equations in 3D cylindrical coordinates ( r , θ , x ) by making the following set of assumptions:
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
The gas flow is constant. The gas flow is along a straight line from gas inlet to exhaust gas exit. The gas flow behavior is compressible. There are numerous applications where a steady, uniform, isentropic flow is a good approximation to the flow in conduits. These include the flow through a jet engine, through the nozzle of a rocket, from a ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .