Search results
Results From The WOW.Com Content Network
The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance. [ 5 ] Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of ...
Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r = 2, the blue elliptic cone aligned with the vertical z-axis represents μ=cosh(1) and the yellow elliptic cone aligned with the (green) x-axis corresponds to ν 2 = 2/3.
In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity, Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.
More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of , one obtains an elliptic cone [4] (also called a conical quadric or quadratic cone), [5] which is a special case of a quadric surface. [4] [5]
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...
For premium support please call: 800-290-4726 more ways to reach us
The analog of a conic section on the sphere is a spherical conic, a quartic curve which can be defined in several equivalent ways. The intersection of a sphere with a quadratic cone whose vertex is the sphere center; The intersection of a sphere with an elliptic or hyperbolic cylinder whose axis passes through the sphere center