Search results
Results From The WOW.Com Content Network
Lewy's example takes this latter equation and in a sense translates its non-solvability to every point of . The method of proof uses a Baire category argument, so in a certain precise sense almost all equations of this form are unsolvable. Mizohata (1962) later found that the even simpler equation
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are: <
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value =), the operation of multiplying by () (+) would be a multiplication by zero. However, it is not always simple to evaluate whether each operation already performed was allowed by ...
The solution set of a given set of equations or inequalities is the set of all its solutions, a solution being a tuple of values, one for each unknown, that satisfies all the equations or inequalities. If the solution set is empty, then there are no values of the unknowns that satisfy simultaneously all equations and inequalities.
A simple procedure to determine which half-plane is in the solution set is to calculate the value of ax + by at a point (x 0, y 0) which is not on the line and observe whether or not the inequality is satisfied. For example, [3] to draw the solution set of x + 3y < 9, one first draws the line with equation x + 3y = 9 as a dotted line, to ...
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution