Ads
related to: lead thickness for radiation protection
Search results
Results From The WOW.Com Content Network
Lead shielding refers to the use of lead as a form of radiation protection to shield people or objects from radiation so as to reduce the effective dose. Lead can effectively attenuate certain kinds of radiation because of its high density and high atomic number ; principally, it is effective at stopping gamma rays and x-rays .
Radiation protection, ... The ionizing radiation used in CT scans can lead to radiation ... Shielding reduces the intensity of radiation, increasing with thickness ...
A material's half-value layer (HVL), or half-value thickness, is the thickness of the material at which the intensity of radiation entering it is reduced by one half. [1] HVL can also be expressed in terms of air kerma rate (AKR), rather than intensity: the half-value layer is the thickness of specified material that, "attenuates the beam of radiation to an extent such that the AKR is reduced ...
A rough calculation for lead equivalence would be to multiply the required Pb thickness by 2.5 (e.g. 10 mm Pb would require a 25 mm thick lead glass window). Older hot cells used a ZnBr 2 solution in a glass tank to shield against high-energy gamma rays.
For the purposes of radiation shielding, many materials have a characteristic halving thickness: the thickness of a layer of a material sufficient to reduce gamma radiation exposure by 50%. Halving thicknesses of common materials include: 1 cm (0.4 inch) of lead, 6 cm (2.4 inches) of concrete, 9 cm (3.6 inches) of packed earth or 150 m (500 ft ...
Unprotected experiments in the U.S. in 1896 with an early X-ray tube (Crookes tube), when the dangers of radiation were largely unknown.[1]The history of radiation protection begins at the turn of the 19th and 20th centuries with the realization that ionizing radiation from natural and artificial sources can have harmful effects on living organisms.
Ads
related to: lead thickness for radiation protection