Search results
Results From The WOW.Com Content Network
In 1988, Rovelli, Lee Smolin and Abhay Ashtekar introduced a theory of quantum gravity called loop quantum gravity. In 1995, Rovelli and Smolin obtained a basis of states of quantum gravity, labelled by Penrose's spin networks, and using this basis they were able to show that the theory predicts that area and volume are quantized. This result ...
Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein 's geometric formulation rather than the treatment of gravity as a mysterious ...
Loop quantum gravity (LQG) thus became related to topological quantum field theory and group representation theory. In 1994, Rovelli and Smolin showed that the quantum operators of the theory associated to area and volume have a discrete spectrum. [ 11 ]
In the second part, The World without Time, Rovelli writes that events constitute the universe instead of particles, and introduces the concept of quanta of time in loop quantum gravity. The final section, The Sources of Time, proposes that the apparent flow of time is due to the inability to observe all the microscopic details of the world. [4]
In loop quantum gravity (LQG), a spin network represents a "quantum state" of the gravitational field on a 3-dimensional hypersurface. The set of all possible spin networks (or, more accurately, "s-knots" – that is, equivalence classes of spin networks under diffeomorphisms) is countable; it constitutes a basis of LQG Hilbert space.
The distinguishing feature of LQC is the prominent role played by the quantum geometry effects of loop quantum gravity (LQG). In particular, quantum geometry creates a brand new repulsive force which is totally negligible at low space-time curvature but rises very rapidly in the Planck regime , overwhelming the classical gravitational ...
The loop representation also provides a natural solution of the spatial diffeomorphism constraint, making a connection between canonical quantum gravity and knot theory. Surprisingly there were a class of loop states that provided exact (if only formal) solutions to Ashtekar's original (ill-defined) Wheeler–DeWitt equation .
In loop quantum gravity, the present spin foam theory has been inspired by the work of Ponzano–Regge model. The idea was introduced by Reisenberger and Rovelli in 1997, [ 2 ] and later developed into the Barrett–Crane model .