Search results
Results From The WOW.Com Content Network
Cobalt-60 (60 Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2714 years. [ 3 ] [ 4 ] : 39 It is produced artificially in nuclear reactors . Deliberate industrial production depends on neutron activation of bulk samples of the monoisotopic and mononuclidic cobalt isotope 59
Decay scheme of 60 Co. These relations can be quite complicated; a simple case is shown here: the decay scheme of the radioactive cobalt isotope cobalt-60. [1] 60 Co decays by emitting an electron with a half-life of 5.272 years into an excited state of 60 Ni, which then decays very fast to the ground state of 60 Ni, via two gamma decays.
Naturally occurring cobalt, Co, consists of a single stable isotope, 59 Co (thus, cobalt is a mononuclidic element). Twenty-eight radioisotopes have been characterized; the most stable are 60 Co with a half-life of 5.2714 years, 57 Co (271.811 days), 56 Co (77.236 days), and 58 Co (70.844 days).
Cobalt-60 (Co-60 or 60 Co) is useful as a gamma-ray source because it can be produced in predictable amounts with high activity by bombarding cobalt with neutrons. It produces gamma rays with energies of 1.17 and 1.33 MeV. [31] [171]
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...
Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. Isotopes are nuclides with the same number of protons but differing numbers of neutrons; that is, they have the same atomic number and are therefore the same chemical element. Isotopes neighbor ...
Cobalt-60 beam machine from 1951 Cobalt units use radiation from cobalt-60, which emits two gamma rays at energies of 1.17 and 1.33 MeV, a dichromatic beam with an average energy of 1.25 MeV. The role of the cobalt unit has largely been replaced by the linear accelerator, which can generate higher energy radiation.
Iron-60 has a half-life of 2.6 million years, [12] [13] but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60, which then decays with a half-life of about 5 years to stable nickel-60. Traces of iron-60 have been found in lunar samples.