When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Graph attention network is a combination of a graph neural network and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data. A multi-head GAT layer can be expressed as follows:

  3. Node graph architecture - Wikipedia

    en.wikipedia.org/wiki/Node_graph_architecture

    Simple neural network layers. The use of node graph architecture in software design has recently become very popular in machine learning applications. The diagram above shows a simple neural network composed of 3 layers. The 3 layers are the input layer, the hidden layer, and the output layer.

  4. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    The intuition behind the LSTM architecture is to create an additional module in a neural network that learns when to remember and when to forget pertinent information. [4] In other words, the network effectively learns which information might be needed later on in a sequence and when that information is no longer needed.

  8. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    Discontinuous activation functions, [5] noncompact domains, [11] [25] certifiable networks, [26] random neural networks, [27] and alternative network architectures and topologies. [ 11 ] [ 28 ] The universal approximation property of width-bounded networks has been studied as a dual of classical universal approximation results on depth-bounded ...

  9. Small-world network - Wikipedia

    en.wikipedia.org/wiki/Small-world_network

    Many empirical graphs show the small-world effect, including social networks, wikis such as Wikipedia, gene networks, and even the underlying architecture of the Internet. It is the inspiration for many network-on-chip architectures in contemporary computer hardware .