Search results
Results From The WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
It encodes the common concept of relation: an element is related to an element , if and only if the pair (,) belongs to the set of ordered pairs that defines the binary relation. An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers, in which each prime is related to each integer that is ...
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive).
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) R : A → B in this category is a relation between the sets A and B, so R ⊆ A × B. The composition of two relations R: A → B and S: B → C is given by (a, c) ∈ S o R ⇔ for some b ∈ B, (a, b) ∈ R and (b, c) ∈ ...
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...
A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total order can never be strongly connected (except on an empty domain).
Standard examples of posets arising in mathematics include: The real numbers , or in general any totally ordered set, ordered by the standard less-than-or-equal relation ≤, is a partial order. On the real numbers R {\displaystyle \mathbb {R} } , the usual less than relation < is a strict partial order.