When.com Web Search

  1. Ads

    related to: derivative product rule worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In this terminology, the product rule states that the derivative operator is a derivation on functions. In differential geometry , a tangent vector to a manifold M at a point p may be defined abstractly as an operator on real-valued functions which behaves like a directional derivative at p : that is, a linear functional v which is a derivation ...

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of the function given by () = + ⁡ ⁡ + is ′ = + ⁡ (⁡) ⁡ () + = + ⁡ ⁡ (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , ⁡ (), ⁡ (), and ⁡ =, as well as the constant , were also used.

  7. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is ⁡ (). We write this as:

  8. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The exterior derivative of this 0-form is the 1-form df. When an inner product ·,· is defined, the gradient ∇f of a function f is defined as the unique vector in V such that its inner product with any element of V is the directional derivative of f along the vector, that is such that

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    In geometric calculus, the geometric derivative satisfies a weaker form of the Leibniz (product) rule. It specializes the Fréchet derivative to the objects of geometric algebra. Geometric calculus is a powerful formalism that has been shown to encompass the similar frameworks of differential forms and differential geometry. [1]