When.com Web Search

  1. Ad

    related to: java output prediction questions interview preparation and applications

Search results

  1. Results From The WOW.Com Content Network
  2. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree.This can be seen as a structured prediction problem [2] in which the structured output domain is the set of all possible parse trees.

  3. Futures and promises - Wikipedia

    en.wikipedia.org/wiki/Futures_and_promises

    Use of futures may be implicit (any use of the future automatically obtains its value, as if it were an ordinary reference) or explicit (the user must call a function to obtain the value, such as the get method of java.util.concurrent.Futurein Java). Obtaining the value of an explicit future can be called stinging or forcing. Explicit futures ...

  4. Question answering - Wikipedia

    en.wikipedia.org/wiki/Question_answering

    Question answering systems in the context of [vague] machine reading applications have also been constructed in the medical domain, for instance related to [vague] Alzheimer's disease. [3] Open-domain question answering deals with questions about nearly anything and can only rely on general ontologies and world knowledge. Systems designed for ...

  5. Branch predictor - Wikipedia

    en.wikipedia.org/wiki/Branch_predictor

    Branch prediction attempts to guess whether a conditional jump will be taken or not. Branch target prediction attempts to guess the target of a taken conditional or unconditional jump before it is computed by decoding and executing the instruction itself. Branch prediction and branch target prediction are often combined into the same circuitry.

  6. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    ML involves the study and construction of algorithms that can learn from and make predictions on data. [3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

  7. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  8. Software testing - Wikipedia

    en.wikipedia.org/wiki/Software_testing

    A common cause of software failure (real or perceived) is a lack of its compatibility with other application software, operating systems (or operating system versions, old or new), or target environments that differ greatly from the original (such as a terminal or GUI application intended to be run on the desktop now being required to become a ...

  9. Delphi method - Wikipedia

    en.wikipedia.org/wiki/Delphi_method

    The Delphi method or Delphi technique (/ ˈ d ɛ l f aɪ / DEL-fy; also known as Estimate-Talk-Estimate or ETE) is a structured communication technique or method, originally developed as a systematic, interactive forecasting method that relies on a panel of experts.