Search results
Results From The WOW.Com Content Network
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
A series of geometric shapes enclosed by its minimum bounding rectangle. In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y).
Unfortunately, intersection tests become quickly more expensive as the bounding boxes become more sophisticated. A bounding box or minimum bounding box (MBB) is a cuboid, or in 2-D a rectangle, containing the object. In dynamical simulation, bounding boxes are preferred to other shapes of bounding volume such as bounding spheres or cylinders ...
In computer graphics, the slab method is an algorithm used to solve the ray-box intersection problem in case of an axis-aligned bounding box (AABB), i.e. to determine the intersection points between a ray and the box.
Alternatively, the shape's area could be compared to that of its bounding circle, [1] [2] its convex hull, [1] [3] or its minimum bounding box. [3] Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [1]
Some instances of the smallest bounding circle. The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square.Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n, between points. [1]