Search results
Results From The WOW.Com Content Network
When two signals with these waveforms, same period, and opposite phases are added together, the sum + is either identically zero, or is a sinusoidal signal with the same period and phase, whose amplitude is the difference of the original amplitudes. The phase shift of the co-sine function relative to the sine function is +90°.
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
The equations describing electromagnetic radiation in a homogeneous dielectric medium admit as special solutions that are sinusoidal plane waves. In electromagnetism , the field F {\displaystyle F} is typically the electric field , magnetic field , or vector potential , which in an isotropic medium is perpendicular to the direction of ...
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.
Phasor notation (also known as angle notation) is a mathematical notation used in electronics engineering and electrical engineering.A vector whose polar coordinates are magnitude and angle is written . [13] can represent either the vector (, ) or the complex number + =, according to Euler's formula with =, both of which have magnitudes of 1.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. [1] The instantaneous phase (also known as local phase or simply phase ) of a complex-valued function s ( t ), is the real-valued function:
The solution to this differential equation produces a sinusoidal position function: = where ω is the frequency of the oscillation, A is the amplitude, and δ is the phase shift of the function. These are determined by the initial conditions of the system.