Search results
Results From The WOW.Com Content Network
This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
The fractional part function has Fourier series expansion [19] {} = = for x not an integer. At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given ...
The problem of generating a function whose graph passes through a given set of function values is called interpolation. This interpolation formula is named after the Danish mathematician Thorvald N. Thiele. It is expressed as a continued fraction, where ρ represents the reciprocal difference:
Here {} denotes the fractional part. Because of the Euler Reflection Formula, and the fact that (¯) = ¯ (), we have an expression for the modulus squared of the Gamma function evaluated on the imaginary axis:
By consequence, we may get, for example, three different values for the fractional part of just one x: let it be −1.3, its fractional part will be 0.7 according to the first definition, 0.3 according to the second definition, and −0.3 according to the third definition, whose result can also be obtained in a straightforward way by
Fractional differencing and fractional integration are the same operation with opposite values of d: e.g. the fractional difference of a time series to d = 0.5 can be inverted (integrated) by applying the same fractional differencing operation (again) but with fraction d = -0.5. See GRETL fracdiff function.
Continued fraction expansion ... This form is advantageous in that the range of integration is fixed and finite. ... Handbook of Mathematical Functions with Formulas, ...