When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    However, since F[X] is a unique factorization domain, there is a unique representation for any rational expression P/Q with P and Q polynomials of lowest degree and Q chosen to be monic. This is similar to how a fraction of integers can always be written uniquely in lowest terms by canceling out common factors.

  3. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Rational functions are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid division by zero. The simplest rational function is the function x ↦ 1 x , {\displaystyle x\mapsto {\frac {1}{x}},} whose graph is a hyperbola , and whose domain is the whole real line except for 0.

  5. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  6. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.

  7. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  8. Field of fractions - Wikipedia

    en.wikipedia.org/wiki/Field_of_fractions

    In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.

  9. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum of the degrees of the numerator and the denominator.