Search results
Results From The WOW.Com Content Network
[W] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended with 67–119 for the nonconvex uniform polyhedra.
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as prisms ...
Lists of shapes cover different types of geometric shape and related topics. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools. They include mathematics topics and other lists of shapes, such as shapes used by drawing or teaching tools.
Important classes of convex polyhedra include the family of prismatoid, the Platonic solids, the Archimedean solids and their duals the Catalan solids, and the regular polygonal faces polyhedron. The prismatoids are the polyhedron whose vertices lie on two parallel planes and their faces are likely to be trapezoids and triangles. [18]
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
A Johnson solid is a convex polyhedron whose faces are all regular polygons. [1] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...