Search results
Results From The WOW.Com Content Network
Given a linear map which is an endomorphism whose matrix is A, in the basis B of the space it transforms vector coordinates [u] as [v] = A[u]. As vectors change with the inverse of B (vectors coordinates are contravariant ) its inverse transformation is [v] = B [v'].
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
Functions of a single variable (such as sine and cosine) may be implemented by a simple array. Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values ...
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing.
Synonym for (0,1)-matrix or logical matrix. [1] Bisymmetric matrix: A square matrix that is symmetric with respect to its main diagonal and its main cross-diagonal. Block-diagonal matrix: A block matrix with entries only on the diagonal. Block matrix: A matrix partitioned in sub-matrices called blocks. Block tridiagonal matrix
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .