Search results
Results From The WOW.Com Content Network
The stereographic projection, also known as the planisphere projection or the azimuthal conformal projection, is a conformal map projection whose use dates back to antiquity. Like the orthographic projection and gnomonic projection, the stereographic projection is an azimuthal projection, and when on a sphere, also a perspective projection.
A stereographic projection of the Moon, showing regions polewards of 60° North. Craters which are circles on the sphere appear circular in this projection, regardless of whether they are close to the pole or the edge of the map. The stereographic is the only projection that maps all circles on a sphere to circles on a plane. This property is ...
In normal aspect, pseudoazimuthal projections map the equator and central meridian to perpendicular, intersecting straight lines. They map parallels to complex curves bowing away from the equator, and meridians to complex curves bowing in toward the central meridian.
Therefore, more generally, a map projection is any method of flattening a continuous curved surface onto a plane. [citation needed] The most well-known map projection is the Mercator projection. [7]: 45 This map projection has the property of being conformal. However, it has been criticized throughout the 20th century for enlarging regions ...
Gall stereographic projection of the world. 15° graticule. Gall stereographic projection with 1,000 km indicatrices of distortion. The Gall stereographic projection, presented by James Gall in 1855, is a cylindrical projection. It is neither equal-area nor conformal but instead tries to balance the distortion inherent in any projection.
As with the Mercator projection, the region near the tangent (or secant) point on a Stereographic map remains very close to true scale for an angular distance of a few degrees. In the ellipsoidal model, a stereographic projection tangent to the pole has a scale factor of less than 1.003 at 84° latitude and 1.008 at 80° latitude.
The projection uses a truncated series to approximate an oblique stereographic projection for the ellipsoid. The projection received some attention in the former Soviet Union. [1] The development of the Bulgarian oblique stereographic projection was done for Romania by the Bulgarian geodesist, Hristow, in the late 1930s. [citation needed]
Small scale maps have large scale variations in a conformal projection, so recent world maps use other projections. Historically, many world maps are drawn by conformal projections, such as Mercator maps or hemisphere maps by stereographic projection. Conformal maps containing large regions vary scales by locations, so it is difficult to ...