When.com Web Search

  1. Ads

    related to: pulsed ultrasound vs. continuous flow

Search results

  1. Results From The WOW.Com Content Network
  2. Doppler ultrasonography - Wikipedia

    en.wikipedia.org/wiki/Doppler_ultrasonography

    The disadvantage of pulsed Doppler is that the measurements can suffer from aliasing. The terms Doppler ultrasound and Doppler sonography have been accepted to apply to both pulsed and continuous Doppler systems, despite the different mechanisms by which the velocity is measured. [citation needed] There are no standards for displaying color ...

  3. Low-intensity pulsed ultrasound - Wikipedia

    en.wikipedia.org/.../Low-intensity_pulsed_ultrasound

    Low-intensity pulsed ultrasound (LIPUS) is a technology that can be used for therapeutic purposes. It exploits low intensity and pulsed mechanical waves in order to induce regenerative and anti-inflammatory effects on biological tissues, such as bone, [ 1 ] cartilage, and tendon. [ 2 ]

  4. Tissue Doppler echocardiography - Wikipedia

    en.wikipedia.org/wiki/Tissue_Doppler...

    Like Doppler flow, tissue Doppler can be acquired both by spectral analysis (spectral density estimation) as pulsed Doppler [1] and by the autocorrelation technique as colour tissue Doppler [2] (duplex ultrasonography). While pulsed Doppler only acquires the velocity at one point at a time, colour Doppler can acquire simultaneous pixel velocity ...

  5. Pulsatile flow - Wikipedia

    en.wikipedia.org/wiki/Pulsatile_flow

    The flow profiles was first derived by John R. Womersley (1907–1958) in his work with blood flow in arteries. [1] The cardiovascular system of chordate animals is a very good example where pulsatile flow is found, but pulsatile flow is also observed in engines and hydraulic systems, as a result of rotating mechanisms pumping the fluid.

  6. Medical ultrasound - Wikipedia

    en.wikipedia.org/wiki/Medical_ultrasound

    Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.

  7. Echocardiography - Wikipedia

    en.wikipedia.org/wiki/Echocardiography

    Not only can an echocardiogram create ultrasound images of heart structures, but it can also produce accurate assessment of the blood flowing through the heart by Doppler echocardiography, using pulsed- or continuous-wave Doppler ultrasound. This allows assessment of both normal and abnormal blood flow through the heart.

  8. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.

  9. Time of flight - Wikipedia

    en.wikipedia.org/wiki/Time_of_flight

    Ultrasonic flow meters come in three different types: transmission (contrapropagating transit time) flowmeters, reflection (Doppler) flowmeters, and open-channel flowmeters. Transit time flowmeters work by measuring the time difference between an ultrasonic pulse sent in the flow direction and an ultrasound pulse sent opposite the flow direction.

  1. Ad

    related to: pulsed ultrasound vs. continuous flow