When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.

  3. Reciprocal - Wikipedia

    en.wikipedia.org/wiki/Reciprocal

    Multiplicative inverse, in mathematics, the number 1/x, which multiplied by x gives the product 1, also known as a reciprocal; Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a ...

  4. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.

  5. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}

  6. Inverse distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse_distribution

    If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b −1,a −1), and the probability density function in this range is =, and is zero elsewhere.

  7. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  8. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    The fourteenth function () denotes the analytic extension of the factorial function via the gamma function, and () is its reciprocal, an entire function. Finally, in the last function f 16 ( x ) {\displaystyle f_{16}(x)} , the exponent x {\displaystyle x} can be replaced by k x {\displaystyle kx} for any nonzero real k {\displaystyle k} , and ...

  9. Reciprocal polynomial - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_polynomial

    Reciprocal polynomials arise naturally in linear algebra as the characteristic polynomial of the inverse of a matrix. In the special case where the field is the complex numbers, when = + + + +, the conjugate reciprocal polynomial, denoted p †, is defined by,