When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermohaline circulation - Wikipedia

    en.wikipedia.org/wiki/Thermohaline_circulation

    Thermohaline circulation. Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. [1] [2] The adjective thermohaline derives from thermo-referring to temperature and -haline referring to salt content, factors which together determine ...

  3. Solubility pump - Wikipedia

    en.wikipedia.org/wiki/Solubility_pump

    The solubility pump is driven by the coincidence of two processes in the ocean : The solubility of carbon dioxide is a strong inverse function of seawater temperature (i.e. solubility is greater in cooler water) The thermohaline circulation is driven by the formation of deep water at high latitudes where seawater is usually cooler and denser

  4. Ocean current - Wikipedia

    en.wikipedia.org/wiki/Ocean_current

    The adjective thermohaline derives from thermo-referring to temperature and -haline referring to salt content, factors which together determine the density of seawater. The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes.

  5. Oceanic freshwater flux - Wikipedia

    en.wikipedia.org/wiki/Oceanic_freshwater_flux

    Thermohaline forcing refers to density-gradient driven motions, whereby density is determined by the temperature (‘thermo’) and salt concentration (‘haline’) of the water. Heat and freshwater fluxes at the ocean's surface play therefore a key role in forming ocean currents.

  6. Atlantic meridional overturning circulation - Wikipedia

    en.wikipedia.org/wiki/Atlantic_meridional...

    The AMOC includes Atlantic currents at the surface and at great depths that are driven by changes in weather, temperature and salinity. Those currents comprise half of the global thermohaline circulation that includes the flow of major ocean currents, the other half being the Southern Ocean overturning circulation. [2]

  7. Marine biogeochemical cycles - Wikipedia

    en.wikipedia.org/wiki/Marine_biogeochemical_cycles

    Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.

  8. Biological pump - Wikipedia

    en.wikipedia.org/wiki/Biological_pump

    The solubility pump is driven by the coincidence of two processes in the ocean: The solubility of carbon dioxide is a strong inverse function of seawater temperature (i.e. solubility is greater in cooler water) The thermohaline circulation is driven by the formation of deep water at high latitudes where seawater is usually cooler and denser

  9. Physical oceanography - Wikipedia

    en.wikipedia.org/wiki/Physical_oceanography

    This is the beginning of the thermohaline circulation. Oceanic currents are largely driven by the surface wind stress; hence the large-scale atmospheric circulation is important to understanding the ocean circulation. The Hadley circulation leads to Easterly winds in the tropics and Westerlies in mid-latitudes.