Search results
Results From The WOW.Com Content Network
While accuracy, as measured by quantitative errors, is important, it may be more crucial to accurately forecast the direction of change. Directional accuracy is similar to a binary evaluation. The metric only considers the upward or downward direction in the time series and is independent of quantitive value of increase or decrease.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
In this case, a perfect forecast results in a forecast skill metric of zero, and skill score value of 1.0. A forecast with equal skill to the reference forecast would have a skill score of 0.0, and a forecast which is less skillful than the reference forecast would have unbounded negative skill score values. [4] [5]
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties
It was proposed in 2005 by statistician Rob J. Hyndman and Professor of Decision Sciences Anne B. Koehler, who described it as a "generally applicable measurement of forecast accuracy without the problems seen in the other measurements."
The tracking signal is a simple indicator that forecast bias is present in the forecast model. ... Calculating demand forecast accuracy; ... A Measure of Forecast ...
A forecast bias occurs when there are consistent differences between actual outcomes and previously generated forecasts of those quantities; that is: forecasts may have a general tendency to be too high or too low. A normal property of a good forecast is that it is not biased.
where is the actual value of the quantity being forecast, is the forecast, and is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a ...