Ad
related to: assembly language vs machine code tutorial
Search results
Results From The WOW.Com Content Network
In computer programming, assembly language (alternatively assembler language [1] or symbolic machine code), [2] [3] [4] often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. [5]
Translation of assembly language into machine language. A much more human-friendly rendition of machine language, named assembly language, uses mnemonic codes to refer to machine code instructions, rather than using the instructions' numeric values directly, and uses symbolic names to refer to storage locations and sometimes registers. [3]
Machine code is the form in which code that can be directly executed is stored on a computer. It consists of machine language instructions, stored in memory, that perform operations such as moving values in and out of memory locations, arithmetic and Boolean logic, and testing values and, based on the test, either executing the next instruction in memory or executing an instruction at another ...
x86 assembly language is a family of low-level programming languages that are used to produce object code for the x86 class of processors. These languages provide backward compatibility with CPUs dating back to the Intel 8008 microprocessor, introduced in April 1972.
LLVM targets many platforms, however its main focus is not machine-dependent code generation; instead a more high-level typed assembly-like intermediate representation is used. Nevertheless for the most common targets the LLVM MC (machine code) project provides an assembler both as an integrated component of the compilers and as an external tool.
Assembly languages directly correspond to a machine language (see below), so machine code instructions appear in a form understandable by humans, although there may not be a one-to-one mapping between an individual statement and an individual instruction.
High Level Assembly (HLA) is an example of this that fully supports advanced data types and object-oriented assembly language programming – despite its early origins. Thus, differing programming paradigms can be seen rather like motivational memes of their advocates, rather than necessarily representing progress from one level to the next.
As it is an assembly language, BAL uses the native instruction set of the IBM mainframe architecture on which it runs, System/360.. The successors to BAL use the native instruction sets of the IBM mainframe architectures on which they run, including System/360, System/370, System/370-XA, ESA/370, ESA/390, and z/Architecture.