Search results
Results From The WOW.Com Content Network
The most common aeronautical convention defines roll as acting about the longitudinal axis, positive with the starboard (right) wing down. Yaw is about the vertical body axis, positive with the nose to starboard. Pitch is about an axis perpendicular to the longitudinal plane of symmetry, positive nose up. [2]
The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]
Yaw string used in front of the cockpit of an F-14D Tomcat. In flight, pilots are instructed to step on the head of the yaw string; the head is the front of the string, where the string is attached to the aircraft. If the head of the yaw string is to the right of the yaw string tail, then the pilot should apply right rudder pressure.
Yaw is known as "heading". A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
This is typically controlled by the rudder at the rear of the airplane. Roll (bank) – in which one wing of the airplane moves up and the other moves down. This is typically controlled by ailerons on the wings of the airplane. Coordinated flight requires the pilot to use pitch, roll and yaw control simultaneously. See also flight dynamics.
A Boeing 737 uses an adjustable stabilizer, moved by a jackscrew, to provide the required pitch trim forces. Generic stabilizer illustrated. A horizontal stabilizer is used to maintain the aircraft in longitudinal balance, or trim: [3] it exerts a vertical force at a distance so the summation of pitch moments about the center of gravity is zero. [4]
[2] Birds visibly use wing warping to achieve control. This was a significant influence on early aircraft designers. The Wright brothers were the first group to use warping wings. Their first plane mimicked the bird's flight patterns and wing form. [3]
Propeller walk (also known as propeller effect, wheeling effect, paddle wheel effect, asymmetric thrust, asymmetric blade effect, transverse thrust, prop walk) is the term for a propeller's tendency to rotate about a vertical axis (also known as yaw motion). The rotation is in addition to the forward or backward acceleration.