Search results
Results From The WOW.Com Content Network
The position of all three axes, with the right-hand rule for describing the angle of its rotations. An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail.
With a symmetrical rocket or missile, the directional stability in yaw is the same as the pitch stability; it resembles the short period pitch oscillation, with yaw plane equivalents to the pitch plane stability derivatives. For this reason, pitch and yaw directional stability are collectively known as the "weathercock" stability of the missile.
Propeller walk (also known as propeller effect, wheeling effect, paddle wheel effect, asymmetric thrust, asymmetric blade effect, transverse thrust, prop walk) is the term for a propeller's tendency to rotate about a vertical axis (also known as yaw motion). The rotation is in addition to the forward or backward acceleration.
Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the aileron control to bank the wings to the left, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is most pronounced in low-speed aircraft with long wings, such as gliders.
Yaw is known as "heading". A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
Yaw angle (or yaw rotation), one of the angular degrees of freedom of any stiff body (for example a vehicle), describing rotation about the vertical axis . Yaw (aviation), one of the aircraft principal axes of rotation, describing motion about the vertical axis of an aircraft (nose-left or nose-right angle measured from vertical axis)
This is typically controlled by the rudder at the rear of the airplane. Roll (bank) – in which one wing of the airplane moves up and the other moves down. This is typically controlled by ailerons on the wings of the airplane. Coordinated flight requires the pilot to use pitch, roll and yaw control simultaneously. See also flight dynamics.
Moreover, solutions may produce a final design that is still too unsafe for certain uses, such as commercial aviation. Further difficulties arise from the problem of fitting the pilot, engines, flight equipment, and payload all within the depth of the wing section. Other known problems with the flying wing design relate to pitch and yaw.