Search results
Results From The WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...
The equations for x and y can be combined to give + = (+) [2] [3] or + = (). This equation shows that σ and τ are the real and imaginary parts of an analytic function of x+iy (with logarithmic branch points at the foci), which in turn proves (by appeal to the general theory of conformal mapping) (the Cauchy-Riemann equations) that these particular curves of σ and τ intersect at ...
The equation of the circle determined by three points (,), (,), (,) not on a line is obtained by a conversion of the 3-point form of a circle equation: () + () () () = () + () () (). Homogeneous form In homogeneous coordinates , each conic section with the equation of a circle has the form x 2 + y 2 − 2 a x z − 2 b y z + c z 2 = 0 ...
The red curve is a hypotrochoid drawn as the smaller black circle rolls around inside the larger blue circle (parameters are R = 5, r = 3, d = 5).. In geometry, a hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.
First, a large circle is constructed and its circumference is subdivided by 12 diameters into 12 arcs (of 30 degrees each; see regular dodecagon). Next, the radius of this circle is itself subdivided into 12 unit segments (radial units), and a series of concentric circles is constructed, each with radius incremented by one radial unit.
The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...