Ad
related to: isosceles triangle conjecture calculator
Search results
Results From The WOW.Com Content Network
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
The theorem may also be proven using trigonometry: Let O = (0, 0), A = (−1, 0), and C = (1, 0). Then B is a point on the unit circle (cos θ, sin θ). We will show that ABC forms a right angle by proving that AB and BC are perpendicular — that is, the product of their slopes is equal to −1. We calculate the slopes for AB and BC:
Duplicate the right triangle to form the isosceles triangle ACP. Construct the circle with center A and radius b, and its tangent h = BH through B. The tangent h forms a right angle with the radius b (Euclid's Elements: Book 3, Proposition 18; or see here), so the yellow triangle in Figure 8 is right. Apply the Pythagorean theorem to obtain
Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, π / 2 radians) and two other congruent angles each measuring half of a right angle (45°, or ...
Isosceles triangle with equal sides AB = AC divided into two right triangles by an altitude drawn from one of the two base angles. In the case of right triangles, the triangle inequality specializes to the statement that the hypotenuse is greater than either of the two sides and less than their sum.
The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof ...
Fig. 1 Isosceles skinny triangle. In trigonometry, a skinny triangle is a triangle whose height is much greater than its base. The solution of such triangles can be greatly simplified by using the approximation that the sine of a small angle is equal to that angle in radians.