When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    An n × n matrix A is diagonalizable if there is a matrix V and a diagonal matrix D such that A = VDV −1. This happens if and only if A has n eigenvectors which constitute a basis for C n. In this case, V can be chosen to be the matrix with the n eigenvectors as columns, and thus a square root of A is = ,

  6. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors. Not all matrices are diagonalizable; matrices that are not diagonalizable are called defective matrices. Consider the following matrix:

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    2. The upper triangle of the matrix S is destroyed while the lower triangle and the diagonal are unchanged. Thus it is possible to restore S if necessary according to for k := 1 to n−1 do ! restore matrix S for l := k+1 to n do S kl := S lk endfor endfor. 3. The eigenvalues are not necessarily in descending order.

  8. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis.

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    After the algorithm has converged, the singular value decomposition = is recovered as follows: the matrix is the accumulation of Jacobi rotation matrices, the matrix is given by normalising the columns of the transformed matrix , and the singular values are given as the norms of the columns of the transformed matrix .