Search results
Results From The WOW.Com Content Network
The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.
Jacobian conjecture. Keller asked this as a question in 1939, and in the next few years there were several published incomplete proofs, including 3 by B. Segre, but Vitushkin found gaps in many of them. The Jacobian conjecture is (as of 2016) an open problem, and more incomplete proofs are regularly announced.
Jacobian conjecture: if a polynomial mapping over a characteristic-0 field has a constant nonzero Jacobian determinant, then it has a regular (i.e. with polynomial components) inverse function. Manin conjecture on the distribution of rational points of bounded height in certain subsets of Fano varieties
If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...
The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...
Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...
The Jacobian conjecture is quite naturally posed in that setting. The motivation for looking at rather general polynomial transformations , say of the projective plane , came from the singularity theory for algebraic curves .
For m = 0 the generalized Jacobian J m is just the usual Jacobian J, an abelian variety of dimension g, the genus of C. For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group L m of dimension deg(m)−1. So we have an exact sequence 0 → L m → J m → J → 0