When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.

  3. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    Jacobian conjecture. Keller asked this as a question in 1939, and in the next few years there were several published incomplete proofs, including 3 by B. Segre, but Vitushkin found gaps in many of them. The Jacobian conjecture is (as of 2016) an open problem, and more incomplete proofs are regularly announced.

  4. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Jacobian conjecture: if a polynomial mapping over a characteristic-0 field has a constant nonzero Jacobian determinant, then it has a regular (i.e. with polynomial components) inverse function. Manin conjecture on the distribution of rational points of bounded height in certain subsets of Fano varieties

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian determinant is used when making a change of variables when evaluating a multiple integral of a function over a region within its domain. To ...

  7. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...

  8. Ott-Heinrich Keller - Wikipedia

    en.wikipedia.org/wiki/Ott-Heinrich_Keller

    The Jacobian conjecture is quite naturally posed in that setting. The motivation for looking at rather general polynomial transformations , say of the projective plane , came from the singularity theory for algebraic curves .

  9. Generalized Jacobian - Wikipedia

    en.wikipedia.org/wiki/Generalized_Jacobian

    For m = 0 the generalized Jacobian J m is just the usual Jacobian J, an abelian variety of dimension g, the genus of C. For m a nonzero effective divisor the generalized Jacobian is an extension of J by a connected commutative affine algebraic group L m of dimension deg(m)−1. So we have an exact sequence 0 → L m → J m → J → 0