When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  3. Sampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(signal_processing)

    A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. [A] A sampler is a subsystem or operation that extracts samples from a continuous signal.

  4. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  5. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    Impulse response analysis is a major facet of radar, ultrasound imaging, and many areas of digital signal processing. An interesting example would be broadband internet connections. DSL/Broadband services use adaptive equalisation techniques to help compensate for signal distortion and interference introduced by the copper phone lines used to ...

  6. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.

  7. Linear response function - Wikipedia

    en.wikipedia.org/wiki/Linear_response_function

    Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.

  8. Hilbert transform - Wikipedia

    en.wikipedia.org/wiki/Hilbert_transform

    In most cases, that reduces the magnitude of the edge distortions. But their duration is dominated by the inherent rise and fall times of the [] impulse response. Fig 5 is an example of piecewise convolution, using both methods 2 (in blue) and 3 (red dots). A sine function is created by computing the Discrete Hilbert transform of a cosine ...

  9. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. [1]