Ad
related to: tilings and patterns book
Search results
Results From The WOW.Com Content Network
Tilings and patterns is a book by mathematicians Branko Grünbaum and Geoffrey Colin Shephard published in 1987 by W.H. Freeman. The book was 10 years in development, and upon publication it was widely reviewed and highly acclaimed.
In the 1987 book, Tilings and patterns, Branko Grünbaum calls the vertex-uniform tilings Archimedean, in parallel to the Archimedean solids. Their dual tilings are called Laves tilings in honor of crystallographer Fritz Laves. [1] [2] They're also called Shubnikov–Laves tilings after Aleksei Shubnikov. [3]
A periodic tiling has a repeating pattern. Some special kinds include regular tilings with regular polygonal tiles all of the same shape, and semiregular tilings with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that ...
Branko Grünbaum and G. C. Shephard, in the 1987 book Tilings and patterns, section 12.3, enumerate a list of 25 uniform tilings, including the 11 convex forms, and add 14 more they call hollow tilings, using the first two expansions above: star polygon faces and generalized vertex figures. [1]
Covering a flat surface ("the plane") with some pattern of geometric shapes ("tiles"), with no overlaps or gaps, is called a tiling. The most familiar tilings, such as covering a floor with squares meeting edge-to-edge, are examples of periodic tilings. If a square tiling is shifted by the width of a tile, parallel to the sides of the tile, the ...
Five sets of tiles discovered by Ammann were described in Tilings and patterns [2] and later, in collaboration with the authors of the book, he published a paper [3] proving the aperiodicity for four of them. Ammann's discoveries came to notice only after Penrose had published his own discovery and gained priority.
The book is divided into seven chapters. Chapter 1 reviews the historical application of symmetry analysis to the discovery and enumeration of patterns in the plane, otherwise known as tessellations or tilings, and the application of geometry to design and the decorative arts.
In geometry of the Euclidean plane, the 3-4-3-12 tiling is one of 20 2-uniform tilings of the Euclidean plane by regular polygons, containing regular triangles, squares, and dodecagons, arranged in two vertex configuration: 3.4.3.12 and 3.12.12.