Ads
related to: basic statements of math practice examples
Search results
Results From The WOW.Com Content Network
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Group (mathematics) Halting problem. insolubility of the halting problem; Harmonic series (mathematics) divergence of the (standard) harmonic series; Highly composite number; Area of hyperbolic sector, basis of hyperbolic angle; Infinite series. convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational ...
The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, [2] [3] [4] along with the accepted rules of inference.
Mathematical practice comprises the working practices of professional mathematicians: selecting theorems to prove, using informal notations to persuade themselves and others that various steps in the final proof are convincing, and seeking peer review and publication, as opposed to the end result of proven and published theorems.
It is sometimes desirable to prove a statement involving two natural numbers, n and m, by iterating the induction process. That is, one proves a base case and an induction step for n, and in each of those proves a base case and an induction step for m. See, for example, the proof of commutativity accompanying addition of natural numbers. More ...
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.