Search results
Results From The WOW.Com Content Network
RT = ae −b(P-1) + c. Where RT = trial completion time P = trial number, starting from 1 (for exponential functions the P-1 argument is used) a, b, and c, are constants. Practice effects are also influenced by latency. Anderson, Fincham, and Douglass looked at the relationship between practice and latency and people's ability to retain what ...
A learning curve is a graphical representation of the relationship between how proficient people are at a task and the amount of experience they have. Proficiency (measured on the vertical axis) usually increases with increased experience (the horizontal axis), that is to say, the more someone, groups, companies or industries perform a task, the better their performance at the task.
The logarithm expresses depth of "choice tree" hierarchy – log 2 indicates binary search was performed. Addition of 1 to n takes into account the "uncertainty about whether to respond or not, as well as about which response to make." [3] In the case of choices with unequal probabilities, the law can be generalized as: =
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
Some learning consultants claim reviewing material in the first 24 hours after learning information is the optimum time to actively recall the content and reset the forgetting curve. [8] Evidence suggests waiting 10–20% of the time towards when the information will be needed is the optimum time for a single review.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Log-linear analysis is a technique used in statistics to examine the relationship between more than two categorical variables. The technique is used for both hypothesis testing and model building. In both these uses, models are tested to find the most parsimonious (i.e., least complex) model that best accounts for the variance in the observed ...