Search results
Results From The WOW.Com Content Network
For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.
Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.
The dimensional model is a specialized adaptation of the relational model used to represent data in data warehouses in a way that data can be easily summarized using online analytical processing, or OLAP queries. In the dimensional model, a database schema consists of a single large table of facts that are described using dimensions and measures.
Data models represent information areas of interest. While there are many ways to create data models, according to Len Silverston (1997) [7] only two modeling methodologies stand out, top-down and bottom-up: Bottom-up models or View Integration models are often the result of a reengineering effort. They usually start with existing data ...
Snowflake schema used by example query. The example schema shown to the right is a snowflaked version of the star schema example provided in the star schema article. The following example query is the snowflake schema equivalent of the star schema example code which returns the total number of television units sold by brand and by country for 1997.
Supported data models (conceptual, logical, physical) Supported notations Forward engineering Reverse engineering Model/database comparison and synchronization Teamwork/repository Database Workbench: Conceptual, logical, physical IE (Crow’s foot) Yes Yes Update database and/or update model No Enterprise Architect
Dimensional models are more denormalized and optimized for data querying, while normalized models seek to eliminate data redundancies and are optimized for transaction loading and updating. The predictable framework of a dimensional model allows the database to make strong assumptions about the data which may have a positive impact on performance.
A single record in this table is referred to as an analytical record or analytic record (AR), and represents the subject of the prediction (e.g. a customer) and stores all data (variables) describing this subject. [2] If for example the subject is a customer then the record may be referred to as a customer analytic record or "CAR". [3] [4] [5]