Search results
Results From The WOW.Com Content Network
A crossed helical gear is a gear that operate on non-intersecting, non-parallel axes. The term crossed helical gears has superseded the term spiral gears. There is theoretically point contact between the teeth at any instant. They have teeth of the same or different helix angles, of the same or opposite hand.
Cutting a single helical groove into a screw-stock cylinder yields what is referred to as a single-thread screw. Similarly, one may construct a double-thread screw provided that the helix angle of the two cuts is the same, and that the second cut is positioned in the uncut material between the grooves of the first.
Spiral bevel gear. A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight ...
In tools for cutting, grinding, and gaging gear teeth, the profile angle is the angle between a cutting edge or a cutting surface, and some principal direction such as that of a shank, an axis, or a plane of rotation. Standard profile angles are established in connection with standard proportions of gear teeth and standard gear cutting tools.
A herringbone gear, a specific type of double helical gear, [1] is a side-to-side, rather than face-to-face, combination of two helical gears of opposite hands. [2] From the top, each helical groove of this gear looks like the letter V, and many together form a herringbone pattern (resembling the bones of a fish such as a herring).
Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". [1] A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called a helicoid. [2]
These limited-slip differentials use helical gears, clutches or cones (an alternative type of clutch) where the engagement force of the gears or clutch is a function of the input torque applied to the differential (as the engine applies more torque the gears or clutches grip harder and Trq d increases).
Helical involute gears are typically only used in limited situations where the spirals of the teeth are of the same handedness, the spirals of the two involutes are of different handedness, and the line of action is the external tangents to the base circles (analogous to a normal belt drive, whereas normal gears are analogous to a crossed-belt ...