Search results
Results From The WOW.Com Content Network
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol). In older literature, the cm 2 /mol is sometimes used; 1 M −1 ⋅cm −1 equals 1000 cm 2 /mol.
The quantity nσ λ is known as the absorption coefficient (β a), a measure of attenuation with units of [cm −1]. The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3], times an efficiency of absorption (area/absorber, [cm 2]). Several sources [2] [12] [3] replace nσ λ with k λ r ...
The units for attenuation coefficient are thus dB/m (or, in general, dB per unit distance). Note that in logarithmic units such as dB, the attenuation is a linear function of distance, rather than exponential.
Spectral hemispherical attenuation coefficient: μ ν μ λ: m −1: Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume. Directional attenuation coefficient: μ Ω: m −1: Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time. [6] Absorbance is related to optical ...
The absorption of atomic line radiation may be described by an absorption coefficient with units of 1/length. The expression κ' dx gives the fraction of intensity absorbed for a light beam at frequency ν while traveling distance dx .
It can also be expressed as a coefficient, with a value of 1.00 representing a material which absorbs 100% of the energy, and a value of 0.00 meaning all the sound is reflected. [1] The concept of a unit for absorption was first suggested by American physicist Wallace Clement Sabine, the founder of the field of architectural acoustics.