When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.

  3. Complex beam parameter - Wikipedia

    en.wikipedia.org/wiki/Complex_beam_parameter

    In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...

  4. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Multiple prism beam expander using r prisms M is the total beam magnification given by M = k 1 k 2 k 3 ···k r, where k is defined in the previous entry and B is the total optical propagation distance [clarification needed] of the multiple prism expander. [5]

  5. M squared - Wikipedia

    en.wikipedia.org/wiki/M_squared

    In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.

  6. Convolution for optical broad-beam responses in scattering ...

    en.wikipedia.org/wiki/Convolution_for_optical...

    For a Gaussian beam, no simple upper integration limits exist because it theoretically extends to infinity. At r >> R, a Gaussian beam and a top-hat beam of the same R and S 0 have comparable convolution results. Therefore, r ≤ r max − R can be used approximately for Gaussian beams as well.

  7. Laser beam quality - Wikipedia

    en.wikipedia.org/wiki/Laser_Beam_Quality

    The factor is now called beam propagation ratio (M 2), and it is closely related to the beam parameter product. While the M 2 factor does not give detail on the spatial characteristics of the beam, it does indicate how close it is to being a fundamental-mode Gaussian beam.

  8. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    The beam quality of a laser beam is characterized by how well its propagation matches an ideal Gaussian beam at the same wavelength. The beam quality factor M squared (M 2) is found by measuring the size of the beam at its waist, and its divergence far from the waist, and taking the product of the two, known as the beam parameter product.

  9. Beam emittance - Wikipedia

    en.wikipedia.org/wiki/Beam_emittance

    If the beam is distributed in phase space with a Gaussian distribution, the emittance of the beam may be specified in terms of the root mean square value of and the fraction of the beam to be included in the emittance. The equation for the emittance of a Gaussian beam is: [1]: 83