Search results
Results From The WOW.Com Content Network
In object-oriented (OO) and functional programming, an immutable object (unchangeable [1] object) is an object whose state cannot be modified after it is created. [2] This is in contrast to a mutable object (changeable object), which can be modified after it is created. [3]
Mori.js brings data structures similar to those in Clojure to JavaScript. [32] Immer.js brings an interesting approach where one "creates the next immutable state by mutating the current one". [33] Immer.js uses native JavaScript objects and not efficient persistent data structures and it might cause performance issues when data size is big.
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).
A common example is the iostream library in C++, which uses the << or >> operators for the message passing, sending multiple data to the same object and allowing "manipulators" for other method calls. Other early examples include the Garnet system (from 1988 in Lisp) and the Amulet system (from 1994 in C++) which used this style for object ...
The capturing of final variables enables capturing variables by value. Even if the variable to capture is non-final, it can always be copied to a temporary final variable just before the class. Capturing of variables by reference can be emulated by using a final reference to a mutable container, for example, a one-element array. The local class ...
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
Functional languages also simulate states by passing around immutable states. This can be done by making a function accept the state as one of its parameters, and return a new state together with the result, leaving the old state unchanged. [82] Impure functional languages usually include a more direct method of managing mutable state.
There are multiple ways to implement the flyweight pattern. One example is mutability: whether the objects storing extrinsic flyweight state can change. Immutable objects are easily shared, but require creating new extrinsic objects whenever a change in state occurs. In contrast, mutable objects can share state.