Search results
Results From The WOW.Com Content Network
In fluid dynamics, an isentropic flow is a fluid flow that is both adiabatic and reversible. That is, no heat is added to the flow, and no energy transformations occur due to friction or dissipative effects. For an isentropic flow of a perfect gas, several relations can be derived to define the pressure, density and temperature along a streamline.
In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero. The isentropic stagnation state is the state a flowing fluid would attain if it underwent a reversible adiabatic deceleration to zero velocity.
In the classical regime, expansions are smooth isentropic processes, while compressions occur through shock waves, which are discontinuities in the flow. If gas-dynamics is inverted, the opposite occurs, namely rarefaction shock waves are physically admissible and compressions occur through smooth isentropic processes.
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density.While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). [1]
Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...
For isentropic processes, the Cauchy number may be expressed in terms of Mach number. The isentropic bulk modulus K s = γ p {\displaystyle K_{s}=\gamma p} , where γ {\displaystyle \gamma } is the specific heat capacity ratio and p is the fluid pressure.
The analysis of gas flow through de Laval nozzles involves a number of concepts and assumptions: For simplicity, the gas is assumed to be an ideal gas. The gas flow is isentropic (i.e., at constant entropy). As a result, the flow is reversible (frictionless and no dissipative losses), and adiabatic (i.e., no heat enters or leaves the system).
Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.