When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flip-flop (electronics) - Wikipedia

    en.wikipedia.org/wiki/Flip-flop_(electronics)

    D flip-flop symbol. The D flip-flop is widely used, and known as a "data" flip-flop. The D flip-flop captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the clock). That captured value becomes the Q output. At other times, the output Q does not change.

  3. Counter (digital) - Wikipedia

    en.wikipedia.org/wiki/Counter_(digital)

    An asynchronous (ripple) counter is a "chain" of toggle (T) flip-flops wherein the least-significant flip-flop (bit 0) is clocked by an external signal (the counter input clock), and all other flip-flops are clocked by the output of the nearest, less significant flip-flop (e.g., bit 0 clocks the bit 1 flip-flop, bit 1 clocks the bit 2 flip-flop ...

  4. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.

  5. Random flip-flop - Wikipedia

    en.wikipedia.org/wiki/Random_flip-flop

    Random flip-flop (RFF) is a theoretical concept of a non-sequential logic circuit capable of generating true randomness. By definition, it operates as an "ordinary" edge-triggered clocked flip-flop , except that its clock input acts randomly and with probability p = 1/2. [ 1 ]

  6. Hardware register - Wikipedia

    en.wikipedia.org/wiki/Hardware_register

    In digital electronics, especially computing, hardware registers are circuits typically composed of flip-flops, often with many characteristics similar to memory, such as: [citation needed] The ability to read or write multiple bits at a time, and; Using an address to select a particular register in a manner similar to a memory address.

  7. Timing closure - Wikipedia

    en.wikipedia.org/wiki/Timing_closure

    The Timing closure in VLSI design and electronics engineering is the process by which a logic design of a clocked synchronous circuit consisting of primitive elements such as combinatorial logic gates (AND, OR, NOT, NAND, NOR, etc.) and sequential logic gates (flip flops, latches, memories) is modified to meet its timing requirements.

  8. Clock gating - Wikipedia

    en.wikipedia.org/wiki/Clock_gating

    A design must contain these enable conditions in order to use and benefit from clock gating. This clock gating process can also save significant die area as well as power, since it removes large numbers of muxes and replaces them with clock gating logic. This clock gating logic is generally in the form of "integrated clock gating" (ICG) cells.

  9. C-element - Wikipedia

    en.wikipedia.org/wiki/C-element

    In digital computing, the Muller C-element (C-gate, hysteresis flip-flop, coincident flip-flop, or two-hand safety circuit) is a small binary logic circuit widely used in design of asynchronous circuits and systems. It outputs 0 when all inputs are 0, it outputs 1 when all inputs are 1, and it retains its output state otherwise.