Search results
Results From The WOW.Com Content Network
A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...
In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries
Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset.
Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are ...
An graph (or a component) with an odd number of vertices cannot have a perfect matching, since there will always be a vertex left alone. The goal is to characterize all graphs that do not have a perfect matching. Start with the most obvious case of a graph without a perfect matching: a graph with an odd number of vertices.
In this case, the dual graph is cubic and bridgeless, so by Petersen's theorem it has a matching, which corresponds in the original graph to a pairing of adjacent triangle faces. Each pair of triangles gives a path of length three that includes the edge connecting the triangles together with two of the four remaining triangle edges.
Hosted by comedian Jeff Foxworthy, the original show asked adult contestants to answer questions typically found in elementary school quizzes with the help of actual fifth-graders as teammates ...
The matching polynomial of a graph G with n vertices is related to that of its complement by a pair of (equivalent) formulas. One of them is a simple combinatorial identity due to Zaslavsky (1981).