Search results
Results From The WOW.Com Content Network
Inductive reactance is the opposition of an inductor to an alternating current. [21] It is defined analogously to electrical resistance in a resistor, as the ratio of the amplitude (peak value) of the alternating voltage to current in the component = = Reactance has units of ohms.
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
X is the real-valued reactance, measured in ohms. The susceptance is the imaginary part of the admittance . The magnitude of admittance is given by: ...
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm. The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below).
The sum of resistance and reactance is called impedance. Electrical impedance is commonly represented by the variable Z and measured in ohms at a specific frequency. Electrical impedance is computed as the vector sum of electrical resistance, capacitive reactance, and inductive reactance.
Capacitive reactance is equal to 1/(2⋅π⋅f⋅C), and inductive reactance is equal to 2⋅π⋅f⋅L. The unit of reactance is the ohm. Inductive reactance resists the change to current, causing the circuit current to lag voltage. Capacitive reactance resists the change to voltage, causing the circuit current to lead voltage.