Search results
Results From The WOW.Com Content Network
Research in zero-knowledge proofs has been motivated by authentication systems where one party wants to prove its identity to a second party via some secret information (such as a password) but does not want the second party to learn anything about this secret. This is called a "zero-knowledge proof of knowledge". However, a password is ...
In cryptography, the Feige–Fiat–Shamir identification scheme is a type of parallel zero-knowledge proof developed by Uriel Feige, Amos Fiat, and Adi Shamir in 1988. Like all zero-knowledge proofs, it allows one party, the Prover, to prove to another party, the Verifier, that they possess secret information without revealing to Verifier what that secret information is.
A common use of a zero-knowledge password proof is in authentication systems where one party wants to prove its identity to a second party using a password but doesn't want the second party or anybody else to learn anything about the password. For example, apps can validate a password without processing it and a payment app can check the ...
Photo by Clint Adair on Unsplash The following post was written and/or published as a collaboration between Benzinga’s in-house sponsored content team and a financial partner of Benzinga. The ...
Most non-interactive zero-knowledge proofs are based on mathematical constructs like elliptic curve cryptography or pairing-based cryptography, which allow for the creation of short and easily verifiable proofs of the truth of a statement. Unlike interactive zero-knowledge proofs, which require multiple rounds of interaction between the prover ...
To do so, Nexus is betting on a species of cryptography called "zero-knowledge proofs," or zk-proofs, which allow one party to prove to another that a piece of data is true, without conveying the ...
One particular motivating example is the use of commitment schemes in zero-knowledge proofs.Commitments are used in zero-knowledge proofs for two main purposes: first, to allow the prover to participate in "cut and choose" proofs where the verifier will be presented with a choice of what to learn, and the prover will reveal only what corresponds to the verifier's choice.
The first mention of Alice and Bob in the context of cryptography was in Rivest, Shamir, and Adleman's 1978 article "A method for obtaining digital signatures and public-key cryptosystems." [ 2 ] They wrote, "For our scenarios we suppose that A and B (also known as Alice and Bob) are two users of a public-key cryptosystem".