Ad
related to: newton's second law explained
Search results
Results From The WOW.Com Content Network
Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 21 ] F = m d v d t ...
This appears to simply be an expression of Newton's second law (F = ma) in terms of body forces instead of point forces. Each term in any case of the Navier–Stokes equations is a body force. A shorter though less rigorous way to arrive at this result would be the application of the chain rule to acceleration:
So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.
i.e. they take the form of Newton's second law applied to a single particle with the unit mass =.. Definition.The equations are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound-second (lbf⋅s), and in the British Gravitational System, the unit is the slug-foot per second (slug⋅ft/s).
By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force , has a magnitude [ 7 ] F c = m a c = m v 2 r {\displaystyle F_{c}=ma_{c}=m{\frac {v^{2}}{r}}} and is, like centripetal acceleration, directed ...
A modern statement of Newton's second law is a vector equation: =, where is the momentum of the system, and is the net force. [ 17 ] : 399 If a body is in equilibrium, there is zero net force by definition (balanced forces may be present nevertheless).