Search results
Results From The WOW.Com Content Network
A suppressor screen is used to identify suppressor mutations that alleviate or revert the phenotype of the original mutation, in a process defined as synthetic viability. [13] Suppressor mutations can be described as second mutations at a site on the chromosome distinct from the mutation under study, which suppress the phenotype of the original ...
Early studies in Caenorhabditis elegans [1] and Drosophila melanogaster [2] [3] saw large-scale, systematic loss of function (LOF) screens performed through saturation mutagenesis, demonstrating the potential of this approach to characterise genetic pathways and identify genes with unique and essential functions.
This approach is known as "reverse pharmacology" or "target based drug discovery" (TDD). [5] However recent statistical analysis reveals that a disproportionate number of first-in-class drugs with novel mechanisms of action come from phenotypic screening [6] which has led to a resurgence of interest in this method. [1] [7] [8]
UCLA, for example, features an open access HTS laboratory Molecular Screening Shared Resources (MSSR, UCLA), which can screen more than 100,000 compounds a day on a routine basis. The open access policy ensures that researchers from all over the world can take advantage of this facility without lengthy intellectual property negotiations.
A large-scale screen for somatic mutations in breast and colorectal tumors showed that many low-frequency mutations each make small contribution to cell survival. [33] If cell survival is determined by many mutations of small effect, it is unlikely that genome sequencing will uncover a single "Achilles heel" target for anti-cancer drugs.
Somatic mutations are those that occur in non-germline cells that are not inherited by children. COSMIC, an acronym of Catalogue Of Somatic Mutations In Cancer, curates data from papers in the scientific literature and large scale experimental screens from the Cancer Genome Project at the Sanger Institute.
Explores human gene function by studying the impact of genome variation on cell biology. Large-scale systematic screens are used to discover the impact of naturally occurring and engineered genome mutations in human induced pluripotent cells (hIPSCs), their differentiated derivatives and other cell types.
Large-scale quantitative mutagenesis screens, in which thousands of millions of mutations are tested, invariably find that a larger fraction of mutations has harmful effects but always returns a number of beneficial mutations as well.