When.com Web Search

  1. Ad

    related to: parabola formula focus

Search results

  1. Results From The WOW.Com Content Network
  2. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    Pencil of conics with a common focus. If p > 0, the parabola with equation = ... Therefore, the point F, defined above, is the focus of the parabola.

  3. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    Point F is a focus point for the red ellipse, green parabola and blue hyperbola.. In geometry, focuses or foci (/ ˈ f oʊ k aɪ /; sg.: focus) are special points with reference to which any of a variety of curves is constructed.

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    A parabola can be obtained as the limit of a sequence of ellipses where one focus is kept fixed as the other is allowed to move arbitrarily far away in one direction, keeping fixed. Thus a and b tend to infinity, a faster than b. The length of the semi-minor axis could also be found using the following formula: [2]

  5. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Conic sections of varying eccentricity sharing a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated pair of lines.

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal ...

  7. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  8. Paraboloid - Wikipedia

    en.wikipedia.org/wiki/Paraboloid

    In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...

  9. Universal parabolic constant - Wikipedia

    en.wikipedia.org/wiki/Universal_parabolic_constant

    The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.