When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gestalt pattern matching - Wikipedia

    en.wikipedia.org/wiki/Gestalt_Pattern_Matching

    The Python difflib library, which was introduced in version 2.1, [1] implements a similar algorithm that predates the Ratcliff-Obershelp algorithm. Due to the unfavourable runtime behaviour of this similarity metric, three methods have been implemented. Two of them return an upper bound in a faster execution time. [1]

  3. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  4. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  5. Approximate string matching - Wikipedia

    en.wikipedia.org/wiki/Approximate_string_matching

    Another recent idea is the similarity join. When matching database relates to a large scale of data, the O(mn) time with the dynamic programming algorithm cannot work within a limited time. So, the idea is to reduce the number of candidate pairs, instead of computing the similarity of all pairs of strings.

  6. Normalized compression distance - Wikipedia

    en.wikipedia.org/wiki/Normalized_compression...

    Normalized compression distance (NCD) is a way of measuring the similarity between two objects, be it two documents, two letters, two emails, two music scores, two languages, two programs, two pictures, two systems, two genomes, to name a few. Such a measurement should not be application dependent or arbitrary.

  7. Similarity learning - Wikipedia

    en.wikipedia.org/wiki/Similarity_learning

    Similarity learning is closely related to distance metric learning.Metric learning is the task of learning a distance function over objects. A metric or distance function has to obey four axioms: non-negativity, identity of indiscernibles, symmetry and subadditivity (or the triangle inequality).

  8. Graph edit distance - Wikipedia

    en.wikipedia.org/wiki/Graph_edit_distance

    Exact algorithms for computing the graph edit distance between a pair of graphs typically transform the problem into one of finding the minimum cost edit path between the two graphs. The computation of the optimal edit path is cast as a pathfinding search or shortest path problem , often implemented as an A* search algorithm .

  9. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another. Simplistic string metrics such as Levenshtein distance have expanded to include phonetic, token , grammatical and character-based methods of statistical comparisons.